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ScienceDirect
Despite advances in experimental and theoretical

neuroscience, we are still trying to identify key biophysical

details that are important for characterizing the operation of

brain circuits. Biological mechanisms at the level of single

neurons and synapses can be combined as ‘building blocks’ to

generate circuit function. We focus on the importance of

capturing multiple timescales when describing these intrinsic

and synaptic components. Whether inherent in the ionic

currents, the neuron’s complex morphology, or the

neurotransmitter composition of synapses, these multiple

timescales prove crucial for capturing the variability and

richness of circuit output and enhancing the information-

carrying capacity observed across nervous systems.
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Introduction
To what extent can we understand the dynamics of large

circuits using biophysical descriptions of single neurons

and small subcircuits? In 1989 Getting suggested that the

biophysical properties of individual neurons and small

circuits could serve as ‘building blocks’ for a library of

biological mechanisms that would aid in understanding all

circuits [1]. Getting compiled a partial list of cellular,

synaptic and network properties important for neural net-

work operation (Table 1). Many of the features on this list,

including intrinsic properties like spike frequency adapta-

tion, post-burst hyperpolarization, and delayed excitation,

refer to changes in temporal firing patterns that can last

from milliseconds to seconds. Getting also underscored the

dramatically different time courses of individual synaptic
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potentials, such as in the network of interneurons that

generate the escape swimming motor program of Tritonia,

as well as the ability of a single synaptic connection to

mediate several actions with different timescales as seen in

multicomponent synapses.

More than 25 years later, we are still struggling to under-

stand which of the myriad of biophysical properties, such

as those of Getting’s building blocks (Table 1), are crucial

to include in models of brain circuits. Ideally, we should

be able to identify a broad array of reusable computational

mechanisms that can be combined to generate function

and describe circuit dynamics. We suggest that models

should capture the relevant timescales of each of the

circuit components. These building blocks are often

nonlinear; thus, circuit dynamics are the product of a

complex spatial and temporal interaction of multiple,

nonlinear processes at the cellular and synaptic levels.

Therefore, multiple networks that have distinct functions

can be realized by using the same constituent building

blocks combined in different ways. In this review we

highlight recent work that discusses the relevance of

biophysical building blocks for circuit dynamics focusing

on the role of multiple timescales in the intrinsic and

synaptic components of neurons and circuits.

Neuronal intrinsic excitability occurs at
multiple timescales
Elaborate morphologies and diverse ion channels deter-

mine the intrinsic excitability of all neurons. To reduce

the potential complexity of this high-dimensional space,

for many years neuroscientists have been developing

strategies to extract the core features of intrinsic neuronal

excitability [2�].

Many studies employ single-compartment models that

simplify the neuron’s morphology but incorporate specific

details of membrane conductances (Figure 1). Choosing

the appropriate set of intrinsic conductances depends on

the features that the model is aimed at explaining. Some

models are constructed by modeling measurements from

voltage clamp experiments of all known membrane cur-

rents [3,4]. Others are more minimalist. For instance,

integrate-and-fire or threshold model neurons can be

successful in capturing spike initiation dynamics

[5�,6]. But adaptation and history-dependence require

additional intrinsic currents [7]. To infer parameter values

for these currents from observed membrane potential
www.sciencedirect.com
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Table 1

Building blocks for circuit dynamics by Peter Getting [1]

Cellular Synaptic Connectivity

Threshold Sign Mutual or recurrent inhibition

f-I relationship Strength

Spike frequency adapt. Time course Reciprocal or lateral inhibition

Post-burst hyperpol. Transmission

Delayed excitation Electrical Recurrent inhibition

Post-inhibitory rebound Chemical Recurrent cyclic inhibition

Plateau potentials Release mechanism Parallel excit./inhib.

Bursting Graded

Endogenous Spike

Conditional Multicomponent PSP
traces, probabilistic frameworks based on statistical infer-

ence [8,9] and optimization techniques aimed at mini-

mizing different objective functions have been

developed [10�]. A recent study has implemented a

control theoretic approach to promote alignment between

the recorded and model trajectory during the fitting

procedure; in addition to fitting synthetically generated

data, the procedure also successfully fitted experimental

traces [11�].

Approaches for determining appropriate model parame-

ters must overcome the following two challenges: (1)

capture the substantial variability observed in experimen-

tal measurements of voltage-dependent current densities,

ion channel mRNA levels and synaptic connections,

suggesting that the space of solutions is highly degenerate

and multiple solutions exist for the same output [12–
16,17�]; (2) achieve robust modulation in spite of vari-

ability and degeneracy [18�,19,20]. Recent studies high-

light the importance of building populations of models

that capture the variability of parameters seen in experi-

mental measurements [21,22]. Computational database

approaches based on parameter exploration of experi-

mentally identified conductances have successfully un-

covered multiple and degenerate solutions [23–
25,26�]. Interesting correlations among intrinsic conduc-

tances and neuronal output have been found experimen-

tally at the single neuron level [27], and in computational

studies at the circuit level using reduction approaches like

principal component analysis to find the interaction of

multiple parameters [28�] or simple homeostatic rules

operating at the level of the constituent neurons [29�].

Database and model reconstruction approaches have

been used to fit ion channel distributions on anatomical

reconstructions of known neurons [30–32,33�]. A recent

study showed that, to maintain functional properties

along the dendritic tree of a neuron, mechanisms that

tune the number of all ion channels collectively are more

likely than those that tune the number of individual ion

channels – this would not have been seen in single-com-

partment models [34�]. In some instances, such as the

implementation of direction selectivity in the mammalian
www.sciencedirect.com 
retina, the entire computation relies primarily on the

spatial structure of dendrites [35��].

Methods have been developed to assess quantitatively

the role of biophysical parameter variations in neuronal

activity of single compartment models, independent of

the neuron model and the set of intrinsic conductances

[36��]. Dynamic input conductances (DICs) are voltage-

dependent conductance curves that evolve over time,

aggregating the activity of all ion channels in the genera-

tion of neuronal activity, and are a useful technique to

study how diverse ion channels contribute to modulation,

robustness and homeostasis in neuronal signaling in dif-

ferent biological systems [36��,37�]. Although currently

only applicable to single neurons, this method can also

include the contribution of synaptic conductances. This

should allow the characterization of network dynamics

from the analysis of smaller building blocks in more

principled ways than large-scale simulations.

Modeling the complexity of biological
synapses
Most models of neuronal networks use simple synapse

models that do not capture the full richness of use-

dependent synaptic dynamics, even when they attempt

to represent synaptic learning rules [38–40]. It has been

long known that many different neurotransmitters are

used in nervous systems, and that the same neurotrans-

mitter can elicit a variety of postsynaptic actions, depend-

ing on the properties of the receptors on the postsynaptic

membrane (Figure 2a) [41]. Moreover, many neurons

contain and release cotransmitters that can act on multi-

ple timescales [42].

In the last several years, a variety of exciting studies of

cotransmission in the vertebrate brain are revealing addi-

tional features of synapses long-thought simpler than they

really are [43–46,47��,48�,49�,50��,51��]. Midbrain dopa-

minergic neurons can corelease glutamate and GABA

[46,47��,52], which have been shown to be regionally

heterogeneous [53�] and differentially affected by exter-

nal perturbations such as cocaine consumption

[54�]. Neurons can switch their transmitter composition
Current Opinion in Neurobiology 2016, 37:44–52
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Figure 1
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Single neuron biophysics impacts intrinsic properties and correlation-

based population coding. (a) Firing rate vs. injected current ( f–I) curves,

for the Connor–Stevens model [95]. We show f–I curves for a range of gA

values yielding a range from type II to type I excitability and then to type

II* excitability [37]. (b) Top: a microcircuit in which two neurons receive

input currents with a common component that represents correlated

activity or shared afferents upstream. The mean of the input currents is m

and each fluctuates with standard deviation s. By varying the fraction of

the common component (black trace in (b)), relative to the independent

components (red and blue traces in (b)), we can control the strength of

the input correlation driving the microcircuit. Shared input currents lead to

correlated spikes, which are quantified using the correlation coefficient of

the two neurons’ spike counts counted in time windows of length T. Type

II neurons with low gA transfer more correlations at small T, while for high

T the trend switches (dashed line) with type I neurons with high gA being

able to transfer more correlations [66].

Figure 2
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Synaptic transmission occurs at multiple timescales. (a) Left: a two-

component inhibitory response of medial pleural neuron (in Aplysia) at

resting level (Post) to a single presynaptic spike (Pre). Right: typical

response of a medial pleural neuron to repeated firing of the presynaptic

neuron. A rapid IPSP is associated with each presynaptic spike, whereas

the slow IPSP is only evident with repeated firing and is seen as a

summated slow wave [41]. (b) Phasic activation of DA controls the three

different components of firing in striatal interneurons by coordinated

action of glutamate and DA release: glutamate (NMDA) receptor

activation evokes an initial burst followed by an afterhyperpolarlization

with a firing pause, while DA elicits both a D2-type DAR-dependent firing

pause and a late D1-type DAR-dependent burst. DA, dopamine; Ach,

acetylcholine; CIN, cholinergic interneuron [58].

Current Opinion in Neurobiology 2016, 37:44–52 
over time, both during development and under different

physiological conditions in the mature brain leading to

changes in behavior [55,56�,57�].

Wieland and colleagues [58��] show that the corelease of

glutamate and dopamine from midbrain dopamine neurons

onto olfactory tubercle cholinergic interneurons induces a

triphasic postsynaptic event composed of an early excitation

due to glutamate (NMDA) receptor activation, an interme-

diate inhibition due to dopamine D2 receptor activation,

and a late excitation due to dopamine D1 receptor activa-

tion (Figure 2b). Such multicomponent drive underlies the

typical response of striatal cholinergic interneurons to rele-

vant sensory stimuli, which can be an initial burst, a firing

pause, a late burst, or a combination of the three.

Khalilov and colleagues have recently demonstrated that

GABA actions in the immature hippocampal network

critically depend on network state [59��]. Because of
www.sciencedirect.com
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transient changes in the postsynaptic chloride driving

force, GABA currents transiently switch from depolariz-

ing to hyperpolarizing to depolarizing during giant depo-

larizing potentials, exerting both excitatory and inhibitory

roles. This might explain the otherwise contradictory

epileptogenic effect of GABAA antagonists observed in

this network.

Taken together, these recent observations suggest that

the multicomponent nature of synaptic potentials is a

critical property that strongly shapes neuronal activity at

the network level. Because of the richness of cotransmit-

ters and postsynaptic receptors, transient synaptic release

can exert both transient and long-lasting effects on post-

synaptic neuron excitability. This argues that network

models that treat all synapses with a single timescale are

likely to be missing important principles of how brain

circuits compute.

From single neuron dynamics to circuit
function
Understanding how single neuron and single synapse

dynamics alter circuit behavior has classically been stud-

ied in both small and large circuits. In the former, it is

possible to see directly how one or more biophysical

details influence circuit function. In the latter case, it is

common to ask how changes in the properties of a

population influence circuit function. In both cases, the

challenge is to understand the extent to which the cir-

cuit’s output is influenced either by its architecture or by

the properties of its component elements.

Reciprocal inhibition in half-center oscillators has been

studied for 100 years [60–63]. In modeling studies, the

two constituent neurons and their synapses are usually

identical. Experimental studies, however, have incorpo-

rated some variable properties of the intrinsic and synap-

tic components [63,64]. In a recent modeling study,

Dethier and colleagues examine the robustness of half-

center oscillations made from neurons with different

subsets of conductances [65��]. They find that a network

with low-threshold T-type calcium current has a slow

positive feedback at a timescale that endows the network

with increased robustness to intrinsic and external per-

turbations, relative to a network with an H-conductance.

This offers opportunities for reliable modulation [65��].

Information and correlation transfer also depend on the

constituent neurons’ biophysical properties. Small two-

neuron populations allow this feature to be studied ana-

lytically. For instance, type I neurons (with more A

current) transfer correlations over longer timescales

(100 ms), while type II neurons (with less A current)

transfer correlations over shorter timescales (5 ms)

(Figure 1) [66,67]. The next challenge would be to take

these small circuit motifs and translate them to describing

the dynamics of larger networks [68��].
www.sciencedirect.com 
How biophysical properties of single neurons impact

network function and coding has been addressed in the

context of signal propagation through feedforward net-

works [69��]. Mease and colleagues have recently iden-

tified a change in the ratio of INa and IK in developing

mouse cortical neurons that enables these neurons to

adaptively scale the gain of their response to the

amplitude of the fluctuations they encounter [70�]. In

a follow-up study, Gjorgjieva and colleagues examined

information transmission at different timescales in net-

works equipped with neurons with different conduc-

tance ratios [69��]. Independent of the absolute values

of the conductances, the networks either became effi-

cient encoders of fast input fluctuations, or gained the

ability to transmit slower, population-wide input varia-

tions in the network [69��]. This work underscores

the significance of simple changes in conductance

parameters in governing how neurons represent

and propagate information across multiple timescales

in networks.

Several experimental and computational studies address

the role of diversity in intrinsic properties for how neuro-

nal populations process stimuli and produce robust out-

put. Some recent work examines the possibility that

intrinsic properties are tuned to maximize the information

of the neurons’ response about the stimuli they encode

[71,72�,73��,74�,75]. Such theories of efficient coding,

however, thus far apply most directly to sensory popula-

tions where there is a clear definition of the stimuli that

the neurons represent. A future challenge will be to

interpret them in the context of larger circuits where

information is integrated from different brain regions and

sensory modalities.

How do we know what biophysical details
matter for circuit performance?
We are starting to see increasing attempts to build very

large networks of neurons with biophysically ‘‘realistic’’

sets of conductances [76–78]. While aiming for in-

creased biological verisimilitude, such models, even

when carefully constructed and supposedly validated,

can be as difficult to understand as the biological

systems they are meant to represent. What is worse,

these models, no matter how carefully constructed, are

always ‘wrong,’ as they fail to contain all the biological

machinery that is either unknown or viewed as less

fundamental by the investigator. Paradoxically, up to a

point, increasing biological realism in large-scale net-

works probably aids understanding, while past some

point, increasing biological realism impedes under-

standing. At present, it is unclear where the inflection

point describing model complexity and increased un-

derstanding lies. Used well, with specific questions in

mind, large-scale biophysically-realistic models can

drive intuition [77,78]. Otherwise, they risk adding

mystery and confusion.
Current Opinion in Neurobiology 2016, 37:44–52
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To understand circuit dynamics as a function of their

intrinsic and synaptic properties, it is necessary to have a

reliable measure of circuit output. In some cases, circuit

behavior is clear. Primary sensory circuits like the retina

in the visual system and the olfactory bulb in the olfactory

system can be described by well-defined input–output

relations. For motor circuits, it is relatively easy to quan-

tify circuit performance.

Quantifying circuit dynamics becomes a difficult problem

if circuits are degenerate so that understanding the role of

any one attribute in circuit function is nontrivial because a

manipulation of a single component can have different

effects depending on the particular ways that circuit

components are combined. Older studies on the Aplysia
gill withdrawal reflex showed that variable sets of neurons

can participate in the production of a given behavior and

that no two trials produce the same pattern [79–81]. Sen-

sory neurons in C. elegans exhibit stochastic responses to

the repeated presentation of the same sensory stimulus

[82]. This variability is present at the level of behavior as

well: behavioral variability persists even when responses

of sensory neurons are reproducible [83��]. Moreover, the

sensitivity to specific odors shows increased variability

across individual animals relative to repeated stimulation

in one animal, and adaptation of response variability can

be observed in multiple trials [83��].

The analysis of small rhythmic circuits can help discover

principles in larger circuits. For instance, neurons can

switch in and out of different oscillatory subnetworks, or

participate in two rhythms at the same time

[84�]. Computational and experimental studies can help

us uncover degenerate mechanisms by which such

switching occurs [18�,84�,85]. But the main challenge

remains: if different neurons are active in multiple trials

to repeated presentation of the same stimulus, how do we

determine the role of individual biophysical properties in

different states of neuronal activity?

In higher brain areas, it can be less than obvious what

computations the circuits perform. Parallel results of

variable output have been found in recordings of larger

networks, such as the place cells in the rodent hippocam-

pus during a virtual navigation task. The place cells

exhibit location-specific firing so that their activity is

confined with remarkable precision to a cell-specific part

of the environment. Despite this spatial precision, the

temporal firing pattern is not nearly as reliable

[86,87]. Variability across individuals is also prevalent

in studies of the human cortex, as shown by functional

magnetic resonance imaging [88,89�].

Conclusions
Models of the future will need to capture more explicitly

the multiple timescales shaping intrinsic and synaptic

excitability. Although we can learn much from small
Current Opinion in Neurobiology 2016, 37:44–52 
circuits that produce well-defined outputs, the challenge

will be to transfer that knowledge to understand the

operation of larger brain circuits that integrate informa-

tion from different sensory modalities and internal states

as in the case of behaving animals. Recent studies have

underscored the widely variable internal dynamics and

responsiveness to external stimuli across different behav-

ioral contexts and brain states [90]. Neuromodulators

modulate intrinsic currents and thus control the excitabil-

ity of cortical neurons as well as the generation of slow

oscillations. These modulations occur on fast timescales

that cannot be explained with processes like long-term

potentiation and depression that change the strength of

synaptic connections over many minutes or hours. Thus,

to account for neuromodulation and homeostasis on one

hand [29�,91,92�], and long-term synaptic plasticity on

another [93,94�] it will be necessary to build models of

timescales that can account for the activity ranging from

milliseconds to hours and days. Biological systems have

managed to find mechanisms that allow them to function

on many timescales seamlessly, but we are far from

understanding the computational principles that allow

this to occur.
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deriving heterogeneous dendritic conductance gradients for several
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67. Hong S, Ratté S, Prescott SA, de Schutter E: Single neuron firing
properties impact correlation-based population coding. J
Neurosci 2012, 32:1413-1428.

68.
��
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